

CS 7267
MACHINE LEARNING

PROJECT 2
SUPERVISED LEARNING

INSTRUCTOR

 Dr. Zongxing Xie

Michael Rizig
001008703

2

1. ABSTRACT
In this project, we are talked with implementing a Supervised Learning Algorithm,
namely KNN, or K Nearest Neighbor. This algorithm is related to the Unsupervised
Learning Algorithm K-Means as they both deal with clustering. The difference between
KNN and K-Means is that KNN is a Supervised Algorithm, meaning that the data comes
prelabeled and we can measure the accuracy and performance to later tune the model.
First, we will discuss normalization, then we will normalize the data. After normalization
we will partition the data between training and testing datasets (70-30 split respectively),
and finally we will run our model with K=1,3,5,7, and 9 and measure each K values
respective accuracy. After testing, we found that with our chosen dataset, our accuracy
decreased as we increased K past 1. The highest accuracy recorded was 92.93% (k=1)
and our lowest was 88.04% (k=9).
To view revision history and step by step building of this project view on my GitHub:
https://github.com/michaelrzg/Machine-Learning-Projects-Python

2. DATA NORMALIZATION

Our dataset is composed of 613 samples, each containing 29 datapoints and 1 label. In
order to determine if our dataset requires normalization, we need to determine some
simple statistics about our dataset. Below is a simple python function used to generate
simple statistics.

def analyze(data):
 N = len(data)
 minValue = min(data)
 maxValue= max(data)
 dataRange = maxValue-minValue
 print("Total values: ",N,"\nMaximum value: ",maxValue,"\nMinimum Value: ",
minValue, "\nRange: ",dataRange)

When we run this function on our original pre-normalization data we get the following.

Based on these statistics, we can observe that our data’s range is very large (4254).
This can cause inconsistency when we begin calculations as the scale of the larger
numbers will effect the smaller numbers representation, and lead to skewed data. We
need to normalize the data in order to identify a values true effect on the dataset and not
its scaled effect. We normalize the data with the below function:
(each sample is a duple with its data in the first poison and label in second)

normalize the dataset
def normalizeData(data):
 # for each sample we find its max and min elements and divide each point by the
range (max-min)

https://github.com/michaelrzg/Machine-Learning-Projects-Python

3

 for x in data:
 maxValue = max(x[0])
 minValue= min(x[0])
 for i in range (len(x[0])):
 x[0][i] = (x[0][i]-minValue)/(maxValue-minValue)
 return data

After running this function, all of our data will fall in the range of 0 and 1.
Our new statistics after normalization are the following:

We can observe that after normalization, our range is now 1.

3. TEST RESULTS

2.1 Results with testing data
Runs for K = 1, 3, 5, 7, and 9.

Figure 2.1.a: K value: 1, Correct: 171, Error: 13, Accuracy: 92.93478260869566 %
Figure 2.1.b: K value: 3, Correct: 168, Error: 16, Accuracy: 91.30434782608695 %
Figure 2.1.c: K value: 5, Correct: 162, Error: 22, Accuracy: 88.04347826086956 %
Figure 2.1.d: K value: 7, Correct: 162, Error: 22, Accuracy: 88.04347826086956 %
Figure 2.1.e: K value: 9, Correct: 162, Error: 22, Accuracy: 88.04347826086956 %

Extra runs:

K value: 11 Correct: 160 Error: 24 Accuracy: 86.95652173913044 %
K value: 13 Correct: 160 Error: 24 Accuracy: 86.95652173913044 %
K value: 15 Correct: 159 Error: 25 Accuracy: 86.41304347826086 %
K value: 17 Correct: 160 Error: 24 Accuracy: 86.95652173913044 %

4

Figure 2.1: (a) K=1, (b) K=3, (c) K=5, (d) K=7, (e) K=9,

(a)

(b)

(c)

(d)

(e)

-

5

4.Discussion

As we can see from the test results, as we increased our number of K values, our
accuracy decreased. This can be caused by many reasons, but for our dataset it seems
our clusters were close together, meaning when we collect more than 1 datapoint we
risk grabbing points from other clusters that are very nearby. Our highest observed
accuracy was 92.93% with K=1 and our lowest accuracy observed within our original
bounds of k=1,3,5,7,9 was 88.04% at K=9. Our overall lowest was observed when we go
beyond our k bounds with 86.86 observed with K=19. Given more time, I would like to
explore applying this concept to much larger datasets and seeing how our accuracy
changes. By having a much larger dataset our model may run a little slower but will likely
be able to accomplish more.

5. CODE

4.1 Code for k-nearest-neighbor.py

Michael Rizig
CS7247 Machine Learning
Professor Zongxing Xie
9/24/24
Assignment 2: K Nearest Neighbor

import plot and math tools
import matplotlib.pyplot as plot
import seaborn as sea
import statistics
import math

class distanceCalculationModule:
 # this function assigns a group to each input datapoint
 # data format:
 # data = [x1,x2...x613]
 # Datapoint x ∈ Data = ([x1,x2,..x29], label)
 # input format = [x1,x2...x29]
 # output format = int
 def predict(self,input, k, data):
 # define list to store distances from input to all datapoints
 distances = []
 # for each datapoint in sample input, calculate its distance to all other
points
 for datapoint in data:
 sum=0
 for i in range(len(input)-1):
 sum += (input[i]-datapoint[0][i])**2
 distances.append((math.sqrt(sum),datapoint))
 # sort list
 distances.sort(key=lambda x: x[0])

6

 # get k closest values
 kclosest = distances[:k]
 #debug
 #print("\n\ninput:",input, "closest:",kclosest)
 #tallay votes
 votes = []
 for value in kclosest:
 votes.append(value[1][1])
 # return the label with the highest votes (mode of set)
 return statistics.mode(votes)
 def run(self,inputSet, trainingSet):
 # predetermined k values to run
 kvalues = [1,3,5,7,9,11,13,15,17,19]
 for k in kvalues:
 # tally for confusion matrix later
 correct=0
 error=0
 tr=0
 bl=0
 n1=0
 p1=0
 #for each datapoint in the input set:
 # 1: remove label from sample array in first positon of duple,
 # 2: run predict to get predicted class for datapoint
 # 3: compare it to actual class (second position in duple)
 # 4: tally results
 for datapoint in inputSet:
 # remove last value ()
 datapoint[0].pop()
 # predict
 prediction = self.predict(datapoint[0],k,trainingSet)
 # compare and tally
 if(prediction != datapoint[1]):
 if(int(prediction)==1):
 tr+=1
 else:
 bl+=1
 error+=1
 else:
 correct+=1
 if(int(prediction) == -1):
 n1+=1
 else:
 p1+=1
 print("K value: ", k , " Correct: " , correct, " Error: ", error, "
Accuracy: " , (correct/(correct+error))*100 , "%")
 #print("top right: " , tr, " bottom left: ",bl, " Negative 1: ", n1, "
Positive 1: " ,p1)

7

class assignmentModule():

 # read in data from file to memory
 def readData(path):
 # open file in read only
 file = open(path,'r',encoding='utf-8-sig')
 # create place to store each full line
 lines = []
 #parse each full line
 for line in file:
 lines.append(line[:-1])
 # create place to store each datapoint array
 output = []
 # for each full line, parse csv by spliting at ',',
 # store each datapoint in output with last value (label) sperated
 # output[x] = ([x1,x2...x29],label)
 for datapoint in lines:
 x = datapoint.split(",")
 # convert each array into an array of float values, and duple it with the
class label
 output.append(([float(x[i]) for i in range(len(x)-2)],x[len(x)-1]))
 return output

 # normalize the dataset
 def normalizeData(data):
 # for each sample we find its max and min elements and divide each point by
the range (max-min)
 for x in data:
 maxValue = max(x[0])
 minValue= min(x[0])
 for i in range (len(x[0])):
 x[0][i] = (x[0][i]-minValue)/(maxValue-minValue)
 return data

 # normalize a single sample value
 def normalizeInput(input):
 maxValue = max(input)
 minValue = min(input)
 output=[]
 for x in input:
 output.append((x-minValue)/(maxValue-minValue))
 return output

Main: --

parse dataset:

8

dataset =
assignmentModule.normalizeData(assignmentModule.readData("Data/wdbc.data.mb.csv"))

define training and testing set ratio:
trainingSetCount = int(len(dataset) * .7)
testingSetCount = len(dataset)-trainingSetCount
partition training set and testing set from full dataset:
trainingSet = dataset[:trainingSetCount]
testingSet = dataset[-testingSetCount:]
run model
model = distanceCalculationModule()
model.run(testingSet,trainingSet)

4.2 Code for dataAnalytics.py

Michael Rizig
CS7247 Machine Learning
Professor Zongxing Xie
9/24/24
Assignment 2: K Nearest Neighbor - Data Analytics

this file generates some simple statistics for the project report

import statistics
read in data from file to memory
def readData(path):
 # open file in read only
 file = open(path,'r',encoding='utf-8-sig')
 # create place to store each full line
 lines = []
 #parse each full line
 for line in file:
 lines.append(line[:-1])
 # create place to store each datapoint array
 output = []
 # for each full line, parse csv by spliting at ',',
 # store each datapoint in output with last value (label) sperated
 # output[x] = ([x1,x2...x29],label)
 for datapoint in lines:
 x = datapoint.split(",")
 # convert each array into an array of float values, and duple it with the
class label
 for i in range(len(x)-1):
 output.append(float(x[i]))
 return output
def analyze(data):
 N = len(data)

9

 minValue = min(data)
 maxValue= max(data)
 dataRange = maxValue-minValue
 print("Total values: ",N,"\nMaximum value: ",maxValue,"\nMinimum Value: ",
minValue, "\nRange: ",dataRange)
normalize the dataset
def normalizeData(data):
 # for each sample we find its max and min elements and divide each point by the
range (max-min)
 Maximum = max(data)
 Minimum = min(data)
 output = []
 for x in data:
 output.append((x-Minimum)/(Maximum-Minimum))
 return output
data = readData("Data/wdbc.data.mb.csv")
analyze(data)
norm =normalizeData(data)
analyze(norm)

